Cross-section measurements in the Institute of Isotopes

Zsolt Révay Institute of Isotopes, Budapest, Hungary

Budapest PGAA facility

- Cold neutron beam
- Pure cold beam until now
 - (at moment we f=60,000 due to partial direct sight)
- Beam chopper
- Flux: -2000: 2×10⁶ cm⁻² s⁻¹
 - -2000-2006: 3×10⁷ cm⁻² s⁻¹

- 2007- : 10⁸ cm⁻² s⁻¹

To-Do List

Advice from Greg Kennedy, Canada András Simonits, Budapest

1.Suspicious nuclides (G. Kennedy)

- Cd-115, 53.46h, 528 keV, 4.486h, 336 keV
 - Difficult to measure Q0 for this one. Need to re-measure k0 with well-thermalised neutron spectrum.
- Ir-192, 73.83d, 296, 308, 316, 468 keVs
 - No k0 values given in De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47.

- Hg-197, 2.67d, 77keV
 - No k0 value given in De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47.
 Difficult case because gamma-ray peak overlaps with x-ray peak but it is important to have a k0 value.
- Se-75, 119.8d, 121, 136, 265, 279, 401keVs
 - Previous k0 measurements used poor efficiency curve or were not corrected for coincidence summing, see my paper JRNC 257, 3 (2003) 475-480.

- Gd-153, 240.4d, 97, 103keVs
 - My paper JRNC 257, 3 (2003) 475-480 suggests that the k0 values of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47 may be about 7% low, probably because of thermal neutron selfshielding.
- Gd-159, 18.56h, 363keV
 - Published k0 value may be OK, but it should be remeasured at the same time as Gd-153.
- Ba-131, 11.5d, 124, 134, 216, 373, 486, 496, 620keVs
 - k0 values of our k0 Workshop paper are in disagreement with those of X. Lin (MTAA11), and 4 to 6% lower than those of Smodis, De Corte, De Wispelaere, JRNC 186 (1994) 183.

- Pd-109, 13.46h (4.69m 2.5%), 39.6s, 88keVs
 - The k0 value of our k0 Workshop paper is 1.52E-3,
 6% lower than the value1.62E-3 calculated from Van Lierde et al. JRNC 245, 1 (2000) 179-184. (converting type Va to type Vc gives 1.58E-3 x 1.025 = 1.62E-3)
- Ag-110m, 249.8d, 658, 764, 884, 1384keVs
 - The values of our k0 Workshop paper are 5% higher than those of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47.
- In-116m, 54.15m, 417, 1097, 1293keVs
 - The values of our k0 Workshop paper are 5% higher than those of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47.

• In-116m2, 2.18s, 162keVs

- Very short half-life, only measured once, Roth et al., JRNC 169, 1 (1993)159-175.

– A good case for chopped-beam.

- Cs-134m, 2.91h, 127keVs
 - The value of our k0 Workshop paper is 5% higher than that of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47, probably due to error in efficiency curve at low energy.

- Cs-134, 2.062y, 563, 569, 605, 796, 802keVs
 - The values of our k0 Workshop paper are 0 to 5% lower than those of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47, probably due to errors in calculating areas of closely spaced peaks.
- Tm-170, 128.6d, 84keV
 - The value of our k0 Workshop paper is 6% higher than that of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47, probably due to error in efficiency curve at low energy.
- Re-186, 90.64h, 137keV
 - The value of our k0 Workshop paper is 3% higher than that of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47, probably due to error in efficiency curve at low energy.

- Sm-153, 46.5h, 103keV
 - The measurements of my paper JRNC 257, 3 (2003) 475-480 suggest that the k0 value of De Corte, Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47 may be about 5% high.
- S-36, 5.05m, 3103keV
 - Should be re-measured with system with accurate efficiency curve at high energy.
- Ca-49, 8.718m, 3084keV
 - Should be re-measured with system with accurate efficiency curve at high energy.
- Co-60m, 10.47m, 59, 1332keV
 - Should be re-measured with system with accurate efficiency curve at low energy.
- U-239, 23.45m, 75keV
 - Should be re-measured with system with accurate efficiency curve at low energy.

Other suspicious nuclides (A. Simonits)

- Q0 Er Isot
- 1.12 2280 37S
- 1.14 1040 64Cu
- 1.908 2560 65Zn
- 2.38 3540 75mGe
- 1.57 3540 75Ge
- 5.93 4300 90mY
- 5.05 6260 95Zr
- 1.8 2950 1311
- 1.2 1540 143Ce

 Nuclides with Q₀>1 and Er>1000keV

Determination of cross-sections (k_0-s) with PGAA

• In-beam measurement

- Decay peaks appear in prompt spectra

• Chopped beam measurements

- Decay peaks appear with a higher sensitivity

Prompt and decay spectrum of Ag

In-beam measurements

k₀-s for short lived nuclides

Final	Energy			k_0	k_0	k_0	
nuclide	(keV)	Half-life	Theoretical k_0	De Corte et al	Roth <i>et al</i>	in-beam	
²⁰ F	1633.6	11.03 ± 0.06 s	$(1.06\pm0.05)\times10^{-3}$		$(1.01\pm0.007)\times10^{-3}$	$(1.06\pm0.04)\times10^{-3}$	
^{24m} Na	472.28	$20.2 \pm 0.1 \text{ ms}$	$(4.82\pm0.05)\times10^{-2}$		$(3.63\pm0.02)\times10^{-2}$	$(4.34\pm0.03)\times10^{-2}$	
²⁸ Al	1778.99	2.2414 ±0.0001 m	$(1.79 \pm 0.02) \times 10^{-2}$	$(1.75\pm0.01)\times10^{-2}$		$(1.80\pm0.02)\times10^{-2}$	
^{38m} Cl	671.33	0.715 ±0.003 s	$(6.7 \pm 1.4) \times 10^{-3}$		(7.95±0.14)×10 ⁻⁴	(7.6±0.8)×10 ⁻⁴	
⁴⁶ Sc	142.53	$18.7 \pm 0.05 \text{ s}$	0.282 ±0.033		0.227±.002	0.226 ± 0.002	
⁵¹ Ti	320.08	$5.76 \pm 0.01 \text{ m}$	$(3.77 \pm 0.07) \times 10^{-4}$	(3.74±0.04)×10 ⁻⁴		(3.66±0.11)×10 ⁻⁴	
⁵² V	1434.08	$3.75 \pm 0.01 \text{ m}$	0.2 ± 0.005	0.196 ± 0.002		0.197 ± 0.004	
⁵⁶ Mn	846.81	2.5785 ± 0.0006 h	0.5 ± 0.008	0.496 ± 0.030		0.502 ± 0.006	
^{60m} Co	1332.5	$10.47 \pm 0.006 \text{ m}$	$3.3 \cdot 10^{-3}$			$(3.20\pm0.09)\times10^{-3}$	
⁶⁶ Cu	1039.35	$5.088 \pm 0.011 \text{ m}$	$(1.6\pm0.4)\times10^{-3}$	$(1.86\pm0.009)\times10^{-3}$		$(1.97\pm0.04)\times10^{-3}$	
^{77m} Ge	215.48	$52.9 \pm 0.6 \text{ s}$	$2.69 \cdot 10^{-5}$			$(2.68 \pm 0.13) \times 10^{-5}$	
^{77m} Se	161.92	17.45 ± 0.1 s	0.029±0.001		$(2.57\pm0.001)\times10^{-2}$	$(2.24\pm0.04)\times10^{-2}$	

Interesting cases

- Na
 - 472 keV line from ^{24m}Na is very intense quasi-prompt peak ($T_{1/2}$ = 20 ms)
 - If we are able to determine Na with PGAA, then k_0 for 472 keV is good

theoretical value : $(4.82\pm0.05) \times 10^{-2}$ previous value: $(3.63\pm0.02) \times 10^{-2}$ present value: $(4.34\pm0.03) \times 10^{-2}$

Interesting cases

- Co
 - two states are formed:
 - ${}^{60}\text{Co}$ $T_{1/2}$ = 5.3 y
 - ^{60m}Co $T_{1/2}=10 \text{ m}$
 - both emit 1332 keV

for rapid chemical analysis use a k_0 for 1332 keV line of ^{60m}Co

 $k_0 = (3.20 \pm 0.09) \times 10^{-3}$

Chopped beam measurements

Nuclide	Half-life*	Decay	Comparator	Decay Peak	Sigma, barn*	$k_{0,Au}$	Literature	Z-score
	(Abs. Unc)	Code	Peak,	Energ	(Abs. Unc)	(Rel. unc %)		
			keV	y, keV				
²⁰ F	11.163 (8) s	Ι	C 4945	1633.53	0.00932 (22)	0.00102 (2.5%)	9.98E-4 (1.2%)	0.89
							1.01E-3 (0.7%)	0.44
²⁴ Na	14.9590 (12) h	IV/B	S 841	1368.66	0.527 (11)	0.047646 (2.1%)	4.68E-02 (0.6%)	0.80
		IV/B	S 841	2754.13	0.526 (13)			
						0.047591 (2.5%)	4.62E-02 (0.8%)	1.12
²⁸ Al	2.2414 (1) m	Ι	H 2223	1778.99	0.233 (3)	0.017946 (1.6%)	1.75E-02 (0.8%)	1.38
^{38m} Cl	0.715 (3) s	IV/B	Cl 1951	671.355	0.0135 (7)	0.000791 (5.2%)	7.95E-04 (1.7%)	-0.09
³⁸ Cl	37.24 (5) m	IV/B	Cl 1951	1642.5	0.0345 (21)	0.00202 (6.2%)	1.97E-03 (1.4%)	0.42
		IV/B	Cl 1951	2166.90	0.0478 (23)			
						0.00280 (4.9%)	2.66E-03 (1.3%)	0.99
⁵⁶ Mn	2.5789 (1) h	Ι	Cl 1951	846.754	13.20 (18)	0.499 (1.6%)	4.96E-01 (0.6%)	0.39
		Ι	Cl 1951	1810.72	3.57 (5)			
						0.1351 (1.6%)	1.35E-01 (0.4%)	0.06
		Ι	Cl 1951	2113.05	1.92 (4)			
						0.0728 (2.2%)	7.17E-02 (0.2%)	0.70
⁴⁶ Sc	18.75 (4) s	Ι	S 841	142.528	4.88 (11)	0.225 (2.4%)	0.2270 (0.7%)	-0.37

Nuclide	Half-life* (Abs. Unc)	Decay Code	Comparato r Peak, keV	Decay Peak Energy,	Sigma, barn* (Abs. Unc)			7
				ke V		(<i>Rel. unc %</i>)	Literature	Z-score
⁸⁰ Br	4,4205 (8) h/	IV/A	H 2223	616.3 ^a	0.259 (3)	0.00675 (1.5%)	6.92E-03 (0.3%)	-1.64
	17.00 (2) III	IV/A	H 2223	665.8ª	0.0469 (11)			
						0.00122 (2.6%)	1.22E-03 (0.5%)	-0.03
⁸² Br	6.13 (5)m/	IV/B	H 2223	554.348	0.890 (18)	0.02315 (2.2%)	2.38E-02 (1.1%)	-1.15
	35.30 (2) h	IV/B	Н 2223	619.106	0.533 (11)			
						0.01387 (2.3%)	1.45E-02 (0.8%)	-1.88
		IV/B	H 2223	698.21	0.352 (8)			
						0.00917 (2.4%)	9.38E-03 (0.9%)	-0.89
		IV/B	H 2223	776.50	1.059 (16)			
						0.02756 (1.7%)	2.76E-02 (0.8%)	-0.08
		IV/B	H 2223	827.8	0.290 (9)			
						0.00753 (3.3%)	7.99E-03 (0.9%)	-1.78
		IV/B	H 2223	1044.0	0.335 (9)			
						0.00872 (2.9%)	9.14E-03 (0.7%)	-1.59
		IV/B	H 2223	1317.5	0.318 (10)			
						0.00828 (3.2%)	8.91E-03 (0.4%)	-2.38
		IV/B	H 2223	1474.9	0.206 (7)			
						0.00536 (3.7%)	5.42E-03 (0.5%)	-0.31
¹²⁷ I	24.99 (2) m	Ι	Н 2223	442.901	0.712 (9)	0.0117 (1.5%)	1.12E-02 (1.7%)	1.79
		Ι	H 2223	526.6	0.0676 (14)			
						0.0011 (2.3%)	1.07E-03 (1.4%)	1.25
^{179m1} Hf	18.67 (4) s	Ι	Cl 1951	214.341 ^b	15.11 (25)	0.176 (2.0%)	0.1770 (0.2%)	-0.29

Nuclide	Half-life* (Abs. Unc)	Decay Code	Comparator Peak, keV	Decay Peak Energ y, keV	Sigma, barn* (Abs. Unc)	k _{0,Au} (Rel. unc %)	Literature	Z- score
¹⁸⁷ W	23.72 (6) h	Ι	H 2223	134.2 ^c	1.037 (19)	0.0117 (1.9%)	1.13E-02 (0.7%)	1.70
		Ι	H 2223	479.55	2.64 (4)			
						0.0299 (1.8%)	2.97E-02 (1.0%)	0.28
		Ι	H 2223	551.5	0.613 (10)			
						0.00693 (1.8%)	6.91E-03 (0.5%)	0.17
		Ι	Н 2223	618.3	0.757 (13)			
						0.00856 (1.8%)	8.65E-03 (0.7%)	-0.51
		Ι	Н 2223	625.5	0.133 (3)			
						0.00151 (2.5%)	1.48E-03 ^d (-)	_
		Ι	H 2223	685.73	3.35 (6)			
						0.0379 (2.0%)	3.71E-02 (0.5%)	0.99
		Ι	H 2223	772.9	0.498 (8)			
						0.00563 (1.8%)	5.61E-03 (0.7%)	0.15
^{86m} Rb	1.017 (3)m	Ι	H 2223	555.61	0.04104 (9)	0.000999 (2.4%)	9.96E-04 (1.6%)	0.12
⁸⁸ Rb	17.78 (11) m	Ι	H 2223	898.03	0.00469 (23)	0.00011 (4.9%)	1.01E-04 (1.5%)	2.25
		Ι	H 2223	1836.00	0.0068 (4)			
						0.00017 (5.3%)	1.57E-04 (1.1%)	0.95
¹⁰⁸ Ag	2.37 (1) min	Ι	Н 2223	433.96 ^e	0.087 (4)	0.00168 (5.0%)	1.59E-03 (2.0%)	1.05
		Ι	H 2223	618.86 ^e	0.055 (4)			
						0.00105 (6.8%)	9.33E-04 (0.8%)	1.69
		Ι	Н 2223	632.98 ^e	0.303 (6)			
						0.00585 (2.0%)	6.01E-03 (0.8%)	-1.26
¹¹⁰ Ag	24.6 (2) s	Ι	H 2223	657.50 ^e	1.88 (3)	0.03627 (1.7%)	1.93 b (2.1%) [6]	-0.98

Further plans

- Short-lived nuclides
 - CPGAA + NAA: ^{116m2}In2 (2.18s), ²⁸Al (2.2min), ¹²⁸I(25min), ¹¹⁰Ag (25s), ²⁴Na(15h)
 - CPGAA + planar detector: 215-keV triplet of ¹⁷⁸⁺¹⁷⁹⁺¹⁸⁰Hf (19s, 5,5h)
 - CPGAA+PGAA: ⁸⁰Br, ²³²Th->²³³Pa->²³³U